
Attribution/License

● Original Materials developed by Mike Shah, Ph.D. (www.mshah.io)
● This slideset and associated source code may not be distributed

without prior written notice

1

http://www.mshah.io

2

Social: @MichaelShah
Web: mshah.io
Courses: courses.mshah.io

www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

19:00 - 20:00 CES (1pm ET) Tue. March 19,
2024

60 minutes + 15 minute Q&A After
Introductory Audience

Making your Program Performance Fly!
The Flyweight Design Pattern

-- Design Patterns Series
with Mike Shah

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

Your Tour Guide for Today
by Mike Shah

● Associate Teaching Professor at Northeastern University
in Boston, Massachusetts.

○ I love teaching: courses in computer systems, computer graphics,
geometry, and game engine development.

○ My research is divided into computer graphics (geometry) and
software engineering (software analysis and visualization tools).

● I do consulting and technical training on modern C++,
DLang, Concurrency, and Graphics Programming

○ Usually graphics or games related -- e.g. Building 3D application
plugins

● Outside of work: guitar, running/weights, traveling and
cooking are fun to talk about

3

Web
www.mshah.io

https://www.youtube.com/c/MikeShah
Non-Academic Courses
courses.mshah.io
Conference Talks
http://tinyurl.com/mike-talks

http://www.mshah.io
https://www.youtube.com/c/MikeShah
http://courses.mshah.io
http://tinyurl.com/mike-talks

Code for the talk

● Located here: https://github.com/MikeShah/Talks/tree/main/2024/mucpp

4

https://github.com/MikeShah/Talks/tree/main/2024/mucpp

Abstract

The flyweight design pattern is a fundamental structural design pattern that allows
objects to reuse or ‘cache’ shared pieces of data. One might go as far to say that the
flyweight design pattern is an obvious pattern when you learn it, but I’ll share in my
experience where it often only becomes obvious after building a system. In this talk I’ll
introduce the flyweight, and talk about how it is used frequently in domains like
computer graphics, but also useful anywhere an object is built of individual
components. We’ll then discuss how to instantiate objects using the flyweight, compare
flyweight objects, and the trade-offs of this pattern versus other related patterns (e.g.
component systems). Attendees will leave this talk understanding how to implement the
flyweight pattern and understand the trade-offs with this fundamental structural design
pattern. This talk will be accessible to beginners and have Modern C++ code available.

The abstract that you read and enticed
you to join me is here!

5

Design Patterns

6

https://en.wikipedia.org/wiki/Software_design_pattern

https://en.wikipedia.org/wiki/Software_design_pattern

Design Patterns (1/4)

7

● Today we are going to be talking
about a ‘design pattern’

○ Design patterns are ‘templates’ for solving
a variety of common problems related to:

■ Creating objects and/or data
■ How we structure our code
■ Our how code behaves

https://refactoring.guru/design-patterns/structural-patterns

https://refactoring.guru/design-patterns/structural-patterns

Design Patterns (2/4)

8

● Today we are going to be talking
about a ‘design pattern’

○ Design patterns are ‘templates’ for solving
a variety of common problems related to:

■ Creating objects and/or data
● Creational Design Patterns

■ How we structure our code
● Structural Design Patterns

■ Our how code behaves
● Behavioral Design Patterns

https://refactoring.guru/design-patterns/structural-patterns

A popular
taxonomy
(i.e.
organization
) of design
patterns is in
three
categories.

https://en.wikipedia.org/wiki/Creational_pattern
https://en.wikipedia.org/wiki/Structural_pattern
https://en.wikipedia.org/wiki/Behavioral_pattern
https://refactoring.guru/design-patterns/structural-patterns

Design Patterns (3/4)

9

● Today we are going to be talking
about a ‘design pattern’

○ Design patterns are ‘templates’ for solving
a variety of common problems related to:

■ Creating objects and/or data
● Creational Design Patterns

■ How we structure our code
● Structural Design Patterns

■ Our how code behaves
● Behavioral Design Patterns

https://refactoring.guru/design-patterns/structural-patterns

This book
gets most
of the
credit for
creating
these three
categories

https://en.wikipedia.org/wiki/Creational_pattern
https://en.wikipedia.org/wiki/Structural_pattern
https://en.wikipedia.org/wiki/Behavioral_pattern
https://refactoring.guru/design-patterns/structural-patterns

Design Patterns (4/4)

10

● Today we are going to be talking
about a ‘design pattern’

○ Design patterns are ‘templates’ for solving
a variety of common problems related to:

■ Creating objects and/or data
● Creational Design Patterns

■ How we structure our code
● Structural Design Patterns

■ Our how code behaves
● Behavioral Design Patterns

https://refactoring.guru/design-patterns/structural-patterns

I highly recommend
‘Klaus’s’ book
before/after/during looking
at the Gang of Four book

He is perhaps humble --
but there are excellent
samples and applied
examples with Modern
C++ code

https://en.wikipedia.org/wiki/Creational_pattern
https://en.wikipedia.org/wiki/Structural_pattern
https://en.wikipedia.org/wiki/Behavioral_pattern
https://refactoring.guru/design-patterns/structural-patterns

Recap - What is a Design Pattern (1/5)

In software engineering, a software design pattern is a general, reusable solution to a commonly
occurring problem within a given context in software design. It is not a finished design that can be
transformed directly into source or machine code. Rather, it is a description or template for how to
solve a problem that can be used in many different situations. Design patterns are formalized best
practices that the programmer can use to solve common problems when designing an application or
system.

Object-oriented design patterns typically show relationships and interactions between classes or
objects, without specifying the final application classes or objects that are involved. Patterns that imply
mutable state may be unsuited for functional programming languages. Some patterns can be rendered
unnecessary in languages that have built-in support for solving the problem they are trying to solve,
and object-oriented patterns are not necessarily suitable for non-object-oriented languages.

Design patterns may be viewed as a structured approach to computer programming intermediate
between the levels of a programming paradigm and a concrete algorithm.

11

https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/Reusability
https://en.wikipedia.org/wiki/Software_design
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Best_practice
https://en.wikipedia.org/wiki/Best_practice
https://en.wikipedia.org/wiki/Object-oriented
https://en.wikipedia.org/wiki/Class_(computer_science)
https://en.wikipedia.org/wiki/Object_(computer_science)
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wikipedia.org/wiki/Algorithm

Recap - What is a Design Pattern (2/5)

In software engineering, a software design pattern is a general, reusable solution to a commonly
occurring problem within a given context in software design. It is not a finished design that can be
transformed directly into source or machine code. Rather, it is a description or template for how to
solve a problem that can be used in many different situations. Design patterns are formalized best
practices that the programmer can use to solve common problems when designing an application or
system.

Object-oriented design patterns typically show relationships and interactions between classes or
objects, without specifying the final application classes or objects that are involved. Patterns that imply
mutable state may be unsuited for functional programming languages. Some patterns can be rendered
unnecessary in languages that have built-in support for solving the problem they are trying to solve,
and object-oriented patterns are not necessarily suitable for non-object-oriented languages.

Design patterns may be viewed as a structured approach to computer programming intermediate
between the levels of a programming paradigm and a concrete algorithm.

12

https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/Reusability
https://en.wikipedia.org/wiki/Software_design
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Best_practice
https://en.wikipedia.org/wiki/Best_practice
https://en.wikipedia.org/wiki/Object-oriented
https://en.wikipedia.org/wiki/Class_(computer_science)
https://en.wikipedia.org/wiki/Object_(computer_science)
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wikipedia.org/wiki/Algorithm

Recap - What is a Design Pattern (3/5)

In software engineering, a software design pattern is a general, reusable solution to a commonly
occurring problem within a given context in software design. It is not a finished design that can be
transformed directly into source or machine code. Rather, it is a description or template for how to
solve a problem that can be used in many different situations. Design patterns are formalized best
practices that the programmer can use to solve common problems when designing an application or
system.

Object-oriented design patterns typically show relationships and interactions between classes or
objects, without specifying the final application classes or objects that are involved. Patterns that imply
mutable state may be unsuited for functional programming languages. Some patterns can be rendered
unnecessary in languages that have built-in support for solving the problem they are trying to solve,
and object-oriented patterns are not necessarily suitable for non-object-oriented languages.

Design patterns may be viewed as a structured approach to computer programming intermediate
between the levels of a programming paradigm and a concrete algorithm.

13

https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/Reusability
https://en.wikipedia.org/wiki/Software_design
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Best_practice
https://en.wikipedia.org/wiki/Best_practice
https://en.wikipedia.org/wiki/Object-oriented
https://en.wikipedia.org/wiki/Class_(computer_science)
https://en.wikipedia.org/wiki/Object_(computer_science)
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wikipedia.org/wiki/Algorithm

Recap - What is a Design Pattern 4/5)

In software engineering, a software design pattern is a general, reusable solution to a commonly
occurring problem within a given context in software design. It is not a finished design that can be
transformed directly into source or machine code. Rather, it is a description or template for how to
solve a problem that can be used in many different situations. Design patterns are formalized best
practices that the programmer can use to solve common problems when designing an application or
system.

Object-oriented design patterns typically show relationships and interactions between classes or
objects, without specifying the final application classes or objects that are involved. Patterns that imply
mutable state may be unsuited for functional programming languages. Some patterns can be rendered
unnecessary in languages that have built-in support for solving the problem they are trying to solve,
and object-oriented patterns are not necessarily suitable for non-object-oriented languages.

Design patterns may be viewed as a structured approach to computer programming intermediate
between the levels of a programming paradigm and a concrete algorithm.

14

https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/Reusability
https://en.wikipedia.org/wiki/Software_design
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Best_practice
https://en.wikipedia.org/wiki/Best_practice
https://en.wikipedia.org/wiki/Object-oriented
https://en.wikipedia.org/wiki/Class_(computer_science)
https://en.wikipedia.org/wiki/Object_(computer_science)
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wikipedia.org/wiki/Algorithm

Recap - What is a Design Pattern (5/5)

In software engineering, a software design pattern is a general, reusable solution to a commonly
occurring problem within a given context in software design. It is not a finished design that can be
transformed directly into source or machine code. Rather, it is a description or template for how to
solve a problem that can be used in many different situations. Design patterns are formalized best
practices that the programmer can use to solve common problems when designing an application or
system.

Object-oriented design patterns typically show relationships and interactions between classes or
objects, without specifying the final application classes or objects that are involved. Patterns that imply
mutable state may be unsuited for functional programming languages. Some patterns can be rendered
unnecessary in languages that have built-in support for solving the problem they are trying to solve,
and object-oriented patterns are not necessarily suitable for non-object-oriented languages.

Design patterns may be viewed as a structured approach to computer programming intermediate
between the levels of a programming paradigm and a concrete algorithm.

15

https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/Reusability
https://en.wikipedia.org/wiki/Software_design
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Best_practice
https://en.wikipedia.org/wiki/Best_practice
https://en.wikipedia.org/wiki/Object-oriented
https://en.wikipedia.org/wiki/Class_(computer_science)
https://en.wikipedia.org/wiki/Object_(computer_science)
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wikipedia.org/wiki/Algorithm

(Aside) Full wikipedia page -- quite a good summary! (1/3)

In software engineering, a software design pattern is a general, reusable solution to a commonly
occurring problem within a given context in software design. It is not a finished design that can be
transformed directly into source or machine code. Rather, it is a description or template for how to
solve a problem that can be used in many different situations. Design patterns are formalized best
practices that the programmer can use to solve common problems when designing an application or
system.

Object-oriented design patterns typically show relationships and interactions between classes or
objects, without specifying the final application classes or objects that are involved. Patterns that imply
mutable state may be unsuited for functional programming languages. Some patterns can be rendered
unnecessary in languages that have built-in support for solving the problem they are trying to solve,
and object-oriented patterns are not necessarily suitable for non-object-oriented languages.

Design patterns may be viewed as a structured approach to computer programming intermediate
between the levels of a programming paradigm and a concrete algorithm.

16

https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/Reusability
https://en.wikipedia.org/wiki/Software_design
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Best_practice
https://en.wikipedia.org/wiki/Best_practice
https://en.wikipedia.org/wiki/Object-oriented
https://en.wikipedia.org/wiki/Class_(computer_science)
https://en.wikipedia.org/wiki/Object_(computer_science)
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wikipedia.org/wiki/Algorithm

(Aside) Full wikipedia page -- quite a good summary! (2/3)

In software engineering, a software design pattern is a general, reusable solution to a commonly
occurring problem within a given context in software design. It is not a finished design that can be
transformed directly into source or machine code. Rather, it is a description or template for how to
solve a problem that can be used in many different situations. Design patterns are formalized best
practices that the programmer can use to solve common problems when designing an application or
system.

Object-oriented design patterns typically show relationships and interactions between classes or
objects, without specifying the final application classes or objects that are involved. Patterns that imply
mutable state may be unsuited for functional programming languages. Some patterns can be rendered
unnecessary in languages that have built-in support for solving the problem they are trying to solve,
and object-oriented patterns are not necessarily suitable for non-object-oriented languages.

Design patterns may be viewed as a structured approach to computer programming intermediate
between the levels of a programming paradigm and a concrete algorithm.

17

So the point of studying software design (specifically
design patterns) should be to help us:

1.) Utilize a prior solution that can be shaped to help
solve current problems

(Note: Perhaps as a language designer, you might also consider studying patterns to see
what could be incorporated into the language!)

https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/Reusability
https://en.wikipedia.org/wiki/Software_design
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Best_practice
https://en.wikipedia.org/wiki/Best_practice
https://en.wikipedia.org/wiki/Object-oriented
https://en.wikipedia.org/wiki/Class_(computer_science)
https://en.wikipedia.org/wiki/Object_(computer_science)
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wikipedia.org/wiki/Algorithm

(Aside) Full wikipedia page -- quite a good summary! (3/3)

In software engineering, a software design pattern is a general, reusable solution to a commonly
occurring problem within a given context in software design. It is not a finished design that can be
transformed directly into source or machine code. Rather, it is a description or template for how to
solve a problem that can be used in many different situations. Design patterns are formalized best
practices that the programmer can use to solve common problems when designing an application or
system.

Object-oriented design patterns typically show relationships and interactions between classes or
objects, without specifying the final application classes or objects that are involved. Patterns that imply
mutable state may be unsuited for functional programming languages. Some patterns can be rendered
unnecessary in languages that have built-in support for solving the problem they are trying to solve,
and object-oriented patterns are not necessarily suitable for non-object-oriented languages.

Design patterns may be viewed as a structured approach to computer programming intermediate
between the levels of a programming paradigm and a concrete algorithm.

18

Let’s take a look at a problem to better understand where
a pattern may be useful!

https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/Reusability
https://en.wikipedia.org/wiki/Software_design
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Best_practice
https://en.wikipedia.org/wiki/Best_practice
https://en.wikipedia.org/wiki/Object-oriented
https://en.wikipedia.org/wiki/Class_(computer_science)
https://en.wikipedia.org/wiki/Object_(computer_science)
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wikipedia.org/wiki/Algorithm

A Problem Domain
Game Programming

19

Game Complexity

20

● Games these days are becoming
increasingly more beautiful and
more complex.

○ The beauty in modern games is
increasing in photorealism (or otherwise
appealing non-photorealistic styles) due
to the improvements in our hardware.

■ We have the ability to render
“more” at higher resolutions

○ The complexity I’ve observed is from
improvements in infrastructure -- i.e. the
toolset (e.g. Unreal Engine) has
improved our ability to focus on building
data-driven games.

https://www.kotaku.com.au/wp-content/uploads/2020/08/19/kpss55oyj635psxgrrnm.gif?quality=75

https://www.kotaku.com.au/wp-content/uploads/2020/08/19/kpss55oyj635psxgrrnm.gif?quality=75

Game Organization (“structure”)

21

● Programming games, and thinking
about how to model virtual worlds is
an interesting exercise.

○ An ‘object-oriented’ approach is often
intuitive as it matches what we see on
the screen.

Pictured is from one of my favorite strategies games more than a decade
ago -- The “Lord of the Rings: Battle for Middle-Earth”
https://i.ytimg.com/vi/wjrCvZOKyp8/maxresdefault.jpg

Observe the individual
‘objects’ in the image to the
right.

https://i.ytimg.com/vi/wjrCvZOKyp8/maxresdefault.jpg

Game Organization (1/3)

22

● Let’s play a little game here
● Question to the audience:

○ What ‘attributes’ do you see of this
character?

■ (i.e. what would the ‘member
variables’ be if you created a
‘struct’ for this hero?)

https://www.gamespot.com/a/uploads/original/gamespot/images/2006/024/reviews/709371-929245_20060125_001.jpg

https://www.gamespot.com/a/uploads/original/gamespot/images/2006/024/reviews/709371-929245_20060125_001.jpg

Game Organization (2/3)

23

● Let’s play a little game here
● Question to the audience:

○ What ‘attributes’ do you see of this
character?

■ (i.e. what would the ‘member
variables’ be if you created a
‘struct’ for this hero?)

● I think something like the following
would be reasonable.

Game Organization (3/3)

24

● This may be a perfectly reasonable
implementation.

○ ‘GameObject’ serves as the ‘generic’ object
that holds various attributes to create
objects.

■ e.g. A ‘GameObject’ with a mesh,
texture, position, and transform is a
3D character like pictured above.

■ e.g. A ‘GameObject’ with a ‘Texture’
and ‘Position’ may be a ‘dialogue’
box’

● There exist plenty of games which
follow this design to build the virtual
world

A Problem Domain
Scale in Game Programming

25

The Horde3D engine was used in several of these
images for today’s talk
https://en.wikipedia.org/wiki/Horde3D
https://github.com/horde3d/Horde3D
http://www.horde3d.org/

https://en.wikipedia.org/wiki/Horde3D
https://github.com/horde3d/Horde3D
http://www.horde3d.org/

Managing Scale (1/8)

26

● As mentioned, games are growing
in their beauty and their complexity

○ Let’s take this example here with many
‘GameObjects’ (the 3D characters
pictured)

http://horde3d.org/screenshots/chicago.jpg

http://horde3d.org/screenshots/chicago.jpg

Managing Scale (2/8)

27

● How many objects are instantiated
here?

○ Let’s say we could have 500
○ Consider those 500 objects may be the

same or different
■ All those objects also carry

variations of geometry, texture,
mesh, names, etc. (as discussed
in previous activity)

http://horde3d.org/screenshots/chicago.jpg

http://horde3d.org/screenshots/chicago.jpg

Managing Scale (3/8)

28

● How many objects are instantiated
here?

○ Let’s say we could have 500
○ Consider those 500 objects may be the

same or different
■ All those objects also carry

variations of geometry, texture,
mesh, names, etc. (as discussed
in previous activity)

https://www.gamedev.net/blogs/entry/2276570-ope
ngl-grass-on-a-windy-day-video/

Keep in mind ‘500’ is even a
relatively low number.

Consider each ‘blade of grass’ in
this graphics demo -- where there
could be thousands of objects for a
relatively simple primitive.

https://www.gamedev.net/blogs/entry/2276570-opengl-grass-on-a-windy-day-video/
https://www.gamedev.net/blogs/entry/2276570-opengl-grass-on-a-windy-day-video/

Managing Scale (4/8)

29

● How many objects are instantiated
here?

○ Let’s say we could have 500
○ Consider those 500 objects may be the

same or different
■ All those objects also carry

variations of geometry, texture,
mesh, names, etc. (as discussed
in previous activity)

(More neat examples)
https://www.youtube.com/watc
h?v=Ibe1JBF5i5Y

https://www.youtube.com/watch?v=Ibe1JBF5i5Y
https://www.youtube.com/watch?v=Ibe1JBF5i5Y

Managing Scale (5/8)

30

● So what is the challenge here?
○ 1. We potentially have many copies of

the same data (on CPU and/or GPU)
○ 2. We may want ‘unique’ attributes

per object
■ i.e. It would look weird in the

simulation if all characters walked
in sync

■ i.e. It would look weird if all of the
grass was oriented in the same
away and every blade of grass
was the same size.

Managing Scale (6/8)

31

● So what is the challenge here?
○ 1. We potentially have many copies of

the same data (on CPU and/or GPU)
○ 2. We may want ‘unique’ attributes

per object
■ i.e. It would look weird in the

simulation if all characters walked
in sync

■ i.e. It would look weird if all of the
grass was oriented in the same
away and every blade of grass
was the same size.

Question to the audience:
What are our programming tools to deal with these
challenges?

Managing Scale (7/8)

32

● So what is the challenge here?
○ 1. We potentially have many copies of

the same data (on CPU and/or GPU)
○ 2. We may want ‘unique’ attributes

per object
■ i.e. It would look weird in the

simulation if all characters walked
in sync

■ i.e. It would look weird if all of the
grass was oriented in the same
away and every blade of grass
was the same size.

Question to the audience:
What are our programming tools to deal with these
challenges?

Possible answers: A mechanism for sharing (e.g.
pointers, a database, component system)

Managing Scale (8/8)

33

● So what is the challenge here?
○ 1. We potentially have many copies of

the same data (on CPU and/or GPU)
○ 2. We may want ‘unique’ attributes

per object
■ i.e. It would look weird in the

simulation if all characters walked
in sync

■ i.e. It would look weird if all of the
grass was oriented in the same
away and every blade of grass
was the same size.

Question to the audience:
What are our programming tools to deal with these
challenges?

Possible answers: A mechanism for sharing (e.g.
pointers, a database, component system)

To help solve this issue, we have a specific pattern to
help us - The Flyweight pattern

(and we can think about the specifics from your previous answer)

Flyweight Design Pattern

34
https://en.wikipedia.org/wiki/Software

https://en.wikipedia.org/wiki/Software

(Aside) Flyweight

● Understanding the word ‘flyweight’
escapes (even as an English
speaker).

○ It has some origin in the sport of boxing
to mean ‘lightweight’

○ A stack overflow response speculates
the term means something related to a
‘flywheel’ -- which has something to do
with efficiency

● So perhaps it’s best to just use the
definition given, and to understand
‘Flyweight’ is a structural design
pattern 35

https://stackoverflow.com/questions/4380658/what-is-the-reason-for-the-name-of-the-flyweight-design-pattern

Flyweight pattern (a structural design pattern) (1/2)

36

● “A flyweight is a shared object that can be used in multiple contexts
simultaneously “ (GOF book)

● We use the flyweight pattern to help us with solving our particular problem:
○ When we have a large number of objects sharing a common properties

■ Thus we want to save memory (i.e. space)
● And as a side-effect, often also improve performance.

https://en.wikipedia.org/wiki/Flyweight_pattern

https://en.wikipedia.org/wiki/Flyweight_pattern

Flyweight pattern (a structural design pattern) (2/2)

37

● “A flyweight is a shared object that can be used in multiple contexts
simultaneously “ (GOF book)

● We use the flyweight pattern to help us with solving our particular problem:
○ When we have a large number of objects sharing a common properties

■ Thus we want to save memory (i.e. space)
● And as a side-effect, often also improve performance.

https://en.wikipedia.org/wiki/Flyweight_pattern

It will be good to understand exactly what a
‘structural’ design pattern is.

https://en.wikipedia.org/wiki/Flyweight_pattern

Structural Design Pattern

● In short, structural patterns are
about ‘code organization’

○ Two primary mechanisms in C++ are:
■ Inheritance
■ Composition

● I’ll shortly show an example of
using composition for our
‘Flyweight’

38

P. 137 of Gang of Four Book

Example Flyweight in C++

39

Goal (1/2)

● A flyweight is a shared object that
can be used in multiple contexts
simultaneously

● Our Goal:
○ To create a ‘flyweight’ that can be shared

amongst multiple objects

40

https://gameprogrammingpatterns.com/flyweight.html

to this

https://gameprogrammingpatterns.com/flyweight.html

Goal (2/2)

● A flyweight is a shared object that
can be used in multiple contexts
simultaneously

● Our Goal:
○ To create a ‘flyweight’ that can be shared

amongst multiple objects

41

https://gameprogrammingpatterns.com/flyweight.html

to this

‘Model’ in this case is the
‘flyweight’ (i.e. shared)
object

https://gameprogrammingpatterns.com/flyweight.html

Flyweight Terms (1/2)

● In the picture:
● The ‘intrinsic’ state to the

flyweight is the ‘model’
○ This could often be ‘const’ data

members for instance.
○ It’s data that is not changing, thus

benefits from being shared
● The ‘extrinsic’ state (unique to

each tree) is the position and
other params.

○ Extrinsic state can be part of the
object or shared

42

Flyweight Terms (2/2)

● In the picture:
● The ‘intrinsic’ state to the

flyweight is the ‘model’
○ This could often be ‘const’ data

members for instance.
○ It’s data that is not changing, thus

benefits from being shared
● The ‘extrinsic’ state (unique to

each tree) is the position and
other params.

○ Extrinsic state can be part of the
object or shared

43

Intrinsic

Extrinsic

Flyweight Example (1/2)

● The following is an example of a ‘flyweight’ pattern.
○ We have now split our GameObject into two categories:

■ Extrinsic (‘often’ unique per invocation data)
■ Intrinsic (‘shared data’)

○ The goal here again is to identify with this pattern where we
might be able to ‘share’ data and avoid duplication.

44

Flyweight Example (2/2)

● The following is an example of a ‘flyweight’ pattern.
○ We have now split our GameObject into two categories:

■ Extrinsic (‘often’ unique per invocation data)
■ Intrinsic (‘shared data’)

○ The goal here again is to identify with this pattern where we
might be able to ‘share’ data and avoid duplication.

45

● In my mind -- this is why this is a ‘structural’
design pattern -- which is concerned with how
our objects are created.

○ (In fact -- this is sort of an ‘anti-creational’
pattern in which we’re trying to not create
objects)

○ We use composition in our structure.

Flyweight Example 2

● Pictured to the right, is a sample
where the flyweight (Model) holds
some ‘const’ state.

○ The ‘extrinsic’ portion of the data is
then passed in through a function.

○ This may help make more sense now
why it is the ‘extrinsic’ (i.e. external,
meant for the ‘unique’ data) state.

46

Flyweight UML Diagram

● Observe the
flyweight UML
diagram on the
right

○ As demonstrated,
we can divide our
objects into
intrinsic and
extrinsic pieces

○ However,
managing those
pieces could
become tricky

47

Flyweight UML Diagram

● The fix is to have
some sort of
‘factory’ to
otherwise do this.

● Note: A factory in
this case could be
some sort of
‘resource
manager’ with a
map for our
flyweights.

48

Flyweight Factory

● Typically another way to think of
the flyweight, is as a ‘resource
manager’

○ i.e. We lookup objects that could be
shared by some GUID (globally
unique identifier), and then return
that object

■ This could otherwise happen
during the creation of our ‘tree’,
‘blade of grass’, etc.

49

More Discussion on Sharing

● Note:
○ We may consider other means of

sharing
■ e.g. std::shared_ptr and

std::weak_ptr’s
● Handle System

50

Flyweight Pattern in the
Wild

51

Flyweight

Instancing in Computer Graphics

● Any time you are repeatedly using
the same data, but perhaps with
some variation -- that is a candidate
for ‘flyweight’ pattern.

○ The case to the right is relatively
obvious

■ data is the same cube
● (Geometry and colors are

the same)
■ Position and scale are the only

attributes changing

52
https://learnopengl.com/Advanced-OpenGL/Instancing

https://learnopengl.com/Advanced-OpenGL/Instancing

Instancing in Computer Graphics

● Here’s a similar example with
asteroids

○ The orientation, scale, and positions are
what’s changing.

○ Geometry and texture however remain
the same for each little piece.

53
https://learnopengl.com/Advanced-OpenGL/Instancing

https://learnopengl.com/Advanced-OpenGL/Instancing

Text Rendering

● Text editing is an example used in the
original Gang of Four Book

○ Each character is rendered the same way, but in
different positions.

54

Related Patterns
Component System

55

Component Pattern

● A complementary design pattern is a
‘component pattern’

○ In this system, you add attributes (as
components) to an object.

○ These ‘components’ could themselves be
flyweights, so as to again reduce the ‘weight’ of
each individual GameObject.

56

Component Example

57

● In the component example on the right
-- what we really want from lines 14-17
is to have some ‘GetFlyweight’ to
determine if the TextureComponents
are unique or shared.

○ Again, we can also have some granularity
as to if the components are shareable or not
as well.

Related Patterns
Component System

58

Approximate
OpenGL Object Programming
Model (1/9)

59

60

Approximate
OpenGL Object Programming
Model (2/9)

● In this example I’ll show *roughly*
how objects work in OpenGL.

61

Approximate
OpenGL Object Programming
Model (3/9)

● In OpenGL there is the ‘OpenGL
context’ which is effectively a global
structure keeping track of all state.
○ OpenGL itself is a giant state

machine.

62

Approximate
OpenGL Object Programming
Model (4/9)

● ObjectGL ‘Objects’ may hold 3D data, pixels,
shaders or other information

○ Based off this name -- observe that we are
storing ‘vertex information’

○ Data is usually stored in ‘flat buffers’ (i.e.
1D-arrays)

63

Approximate
OpenGL Object Programming
Model (5/9)

● ‘OpenGL Objects’ are identified by a ‘handle’ (i.e. integer) into an array of the
global glContext object.
○ The handle corresponds to the index in the array in the OpenGL context
○ (Note: OpenGL likely does something more intelligent than using a

fixed-size array of 100 VertexBufferObject’s -- this is just a demo!)

64

Approximate
OpenGL Object Programming
Model (6/9)

● You then ‘use’ the handles in functions
which will access the correct OpenGL
object at an array index that has been
previously allocated

65

Approximate
OpenGL Object Programming
Model (7/9)

● Note: A common pattern you’ll see in OpenGL for
functions of the form ‘Gen’ (short for generate) or
‘Create’ will be to take a pointer to an integer
handle.

○ Observe that at line ‘51’ we create an integer
with no assigned value

○ At line ‘54’ we pass in the address of
‘someHandle1’ into the function.

■ Within ‘GenerateVertexBufferObject’ the
value ‘someHandle1’ will then be
assigned through the pointer (line 31)

● You need to actually watch this entire video you do
not understand -- Learn and understand (almost)
everything about the fundamentals of C++ pointers
in 96 minutes

https://www.youtube.com/watch?v=2R5cjpi9Fzw
https://www.youtube.com/watch?v=2R5cjpi9Fzw
https://www.youtube.com/watch?v=2R5cjpi9Fzw

66

Approximate
OpenGL Object Programming
Model (8/9)

● Passing in a ‘handle’ (or sometimes also called
‘name’ in OpenGL functions -- but still usually some
int type) results in accessing memory from our
allocated buffer in the OpenGL context.

○ Note: In most versions of OpenGL, per object
type, we only have ‘1’ object type ‘bound’ at a
given time

■ All proceeding operations act on the
currently bound object.

67

Approximate
OpenGL Object Programming
Model (9/9)

1. Again -- Often OpenGL is managing these buffers
smarter for performance

2. Yes -- you could write your own map data structure
to map integers to strings if you want more
descriptive names.

68

Handle System

● So what I have shown you -- this idea
with a ‘handle’ to an object is exactly
making use of flyweights.

○ OpenGL (and other frameworks) that are
‘state machines’ may also do very well with
this idea of sharing data.

Summary

69

Pros and Cons

● Pros
○ Can greatly increase the performance of your program

■ Both in terms of memory usage being reduced and actual performance of application
(shared data provides potentially good temporal locality)

● Neutral
○ Because we are ‘sharing’ resources ‘consistency’ is a byproduct, which may generate a ‘more

correct’ result (i.e. All of our geometry is the same in a 3D mesh)
● Cons

○ You loose fine grain control of every single object
○ Some additional complexity added

■ (e.g. Resource managers/factories and the division of objects into intrinsic and extrinsic
state)

70

More Resources

● https://gameprogrammingpatterns.com/flyweight.html
● https://www.boost.org/doc/libs/1_84_0/libs/flyweight/doc/tutorial/index.html

71

https://gameprogrammingpatterns.com/flyweight.html
https://www.boost.org/doc/libs/1_84_0/libs/flyweight/doc/tutorial/index.html

72

Social: @MichaelShah
Web: mshah.io
Courses: courses.mshah.io

www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

19:00 - 20:00 CES (1pm ET) Tue. March 19,
2024

60 minutes + 15 minute Q&A After
Introductory Audience

Making your Program Performance Fly!
The Flyweight Design Pattern

-- Design Patterns Series
with Mike Shah

Thank you 2024!

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

Thank you!

73

Extras and Notes

74

